Public facing website hosted on EC2 instances

Nathan Peck profile picture
Nathan Peck
Senior Developer Advocate at AWS

About

This is a simple public facing web service, hosted on EC2 instances, and fronted by an Application Load Balancer that provides ingress from the internet. This pattern is well suited for:

  • A static HTML website, perhaps hosted by an NGINX or Apache webserver container
  • A dynamically generated web app, perhaps served by a Node.js process
  • An API service intended for the public to access
  • An edge service which needs to make many outbound requests, or high bandwidth connections, to other services or API's on the public internet

WARNING

This pattern is not well suited for:

  • A private internal API service
  • An application that has very strict networking security requirements

For the above use cases instead consider using the AWS VPC version of this pattern, designed for private API services that only have private IP addresses.

Architecture

The following diagram shows the architecture of this deployment:

Public subnetPublic subnetVPCAvailability Zone 1Availability Zone 2ContainerInternet gatewayApplicationLoad BalancerLoad Balancer has nodes in each AZTrafficContainerEC2 instanceContainerEC2 instance

  1. Public internet ingress is via a VPC internet gateway that sends traffic to an Application Load Balancer. The Application Load Balancer is a fully AWS managed ingress point that is hosted using multiple nodes across all availability zones.
  2. The Application Load Balancer has been configured by Amazon ECS so that it knows what ports on which EC2 instances to send traffic to in order to reach an instance of your application.
  3. EC2 instances are configured to allow inbound traffic from the load balancer on all ports.
  4. Amazon ECS has launched application containers onto the EC2 instances, and configured port mappings that allow the Application Load Balancer to reach each container on a dedicated host port.
  5. Incoming internet traffic is evenly distributed by the Application Load Balancer across all available application ports across all EC2 instances.

An important characteristic of this pattern is that it makes use of bridge networking mode:

Application Load Balancer distributes traffic evenlyacross target ports across all EC2 instancesPort 80TrafficEC2 instance (hosting multiple containers)Port 32768Docker network bridgeContainerPort 80Port 42922ContainerPort 80Port 33045ContainerPort 80

Containers are launched onto EC2 instances in bridge networking mode, which allows port mappings to be configured with a randomly assigned port from the ephemeral port range (default 32768 to 61000).

Amazon ECS keeps track of each container port mapping and configures the Application Load Balancer (ALB) with the port number of each target container that it may wish to send traffic to.

A security group on the EC2 instance opens up the EC2 instance to receiving inbound traffic on all ports, only from the security group of the ALB itself. This maintains the security of the container workloads by rejecting all traffic that does not originate from the load balancer itself.

Dependencies

This pattern requires that you have an AWS account, and that you use AWS Serverless Application Model (SAM) CLI. If not already installed then please install SAM CLI for your system.

Choose a VPC

This pattern can be deployed on top of either of the following VPC patterns:

Which one you choose depends on your goals for this deployment. You can choose the low cost VPC to start with and upgrade to the large sized VPC later on if you have additional private services, or private database servers you wish to deploy in the VPC.

Download the vpc.yml file from your chosen pattern, but do not deploy it yet. Deployment will be done later in the process.

Define the cluster

The following CloudFormation defines an ECS cluster that has a capacity provider that launches EC2 instances on demand as you request for ECS to deploy containers. The instances will be launched in the public subnet.

File: cluster.ymlLanguage: yml
AWSTemplateFormatVersion: '2010-09-09'
Description: EC2 ECS cluster that starts out empty, with no EC2 instances yet.
             An ECS capacity provider automatically launches more EC2 instances
             as required on the fly when you request ECS to launch services or
             standalone tasks.
Parameters:
  InstanceType:
    Type: String
    Default: c5.xlarge
    Description: Class of EC2 instance used to host containers. Choose t2 for testing, m5 for general purpose, c5 for CPU intensive services, and r5 for memory intensive services
    AllowedValues: ["a1.2xlarge", "a1.4xlarge", "a1.large", "a1.medium", "a1.metal", "a1.xlarge", "c1.medium", "c1.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c3.large", "c3.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c4.large", "c4.xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.large", "c5.metal", "c5.xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.large", "c5a.xlarge", "c5ad.12xlarge", "c5ad.16xlarge", "c5ad.24xlarge", "c5ad.2xlarge", "c5ad.4xlarge", "c5ad.8xlarge", "c5ad.large", "c5ad.xlarge", "c5d.12xlarge", "c5d.18xlarge", "c5d.24xlarge", "c5d.2xlarge", "c5d.4xlarge", "c5d.9xlarge", "c5d.large", "c5d.metal", "c5d.xlarge", "c5n.18xlarge", "c5n.2xlarge", "c5n.4xlarge", "c5n.9xlarge", "c5n.large", "c5n.metal", "c5n.xlarge", "c6a.12xlarge", "c6a.16xlarge", "c6a.24xlarge", "c6a.2xlarge", "c6a.32xlarge", "c6a.48xlarge", "c6a.4xlarge", "c6a.8xlarge", "c6a.large", "c6a.metal", "c6a.xlarge", "c6g.12xlarge", "c6g.16xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.large", "c6g.medium", "c6g.metal", "c6g.xlarge", "c6gd.12xlarge", "c6gd.16xlarge", "c6gd.2xlarge", "c6gd.4xlarge", "c6gd.8xlarge", "c6gd.large", "c6gd.medium", "c6gd.metal", "c6gd.xlarge", "c6gn.12xlarge", "c6gn.16xlarge", "c6gn.2xlarge", "c6gn.4xlarge", "c6gn.8xlarge", "c6gn.large", "c6gn.medium", "c6gn.xlarge", "c6i.12xlarge", "c6i.16xlarge", "c6i.24xlarge", "c6i.2xlarge", "c6i.32xlarge", "c6i.4xlarge", "c6i.8xlarge", "c6i.large", "c6i.metal", "c6i.xlarge", "c6id.12xlarge", "c6id.16xlarge", "c6id.24xlarge", "c6id.2xlarge", "c6id.32xlarge", "c6id.4xlarge", "c6id.8xlarge", "c6id.large", "c6id.metal", "c6id.xlarge", "c6in.12xlarge", "c6in.16xlarge", "c6in.24xlarge", "c6in.2xlarge", "c6in.32xlarge", "c6in.4xlarge", "c6in.8xlarge", "c6in.large", "c6in.metal", "c6in.xlarge", "c7g.12xlarge", "c7g.16xlarge", "c7g.2xlarge", "c7g.4xlarge", "c7g.8xlarge", "c7g.large", "c7g.medium", "c7g.metal", "c7g.xlarge", "c7gd.12xlarge", "c7gd.16xlarge", "c7gd.2xlarge", "c7gd.4xlarge", "c7gd.8xlarge", "c7gd.large", "c7gd.medium", "c7gd.xlarge", "c7gn.12xlarge", "c7gn.16xlarge", "c7gn.2xlarge", "c7gn.4xlarge", "c7gn.8xlarge", "c7gn.large", "c7gn.medium", "c7gn.xlarge", "cc2.8xlarge", "cr1.8xlarge", "d2.2xlarge", "d2.4xlarge", "d2.8xlarge", "d2.xlarge", "d3.2xlarge", "d3.4xlarge", "d3.8xlarge", "d3.xlarge", "d3en.12xlarge", "d3en.2xlarge", "d3en.4xlarge", "d3en.6xlarge", "d3en.8xlarge", "d3en.xlarge", "dl1.24xlarge", "f1.16xlarge", "f1.2xlarge", "f1.4xlarge", "g2.2xlarge", "g2.8xlarge", "g3.16xlarge", "g3.4xlarge", "g3.8xlarge", "g3s.xlarge", "g4ad.16xlarge", "g4ad.2xlarge", "g4ad.4xlarge", "g4ad.8xlarge", "g4ad.xlarge", "g4dn.12xlarge", "g4dn.16xlarge", "g4dn.2xlarge", "g4dn.4xlarge", "g4dn.8xlarge", "g4dn.metal", "g4dn.xlarge", "g5.12xlarge", "g5.16xlarge", "g5.24xlarge", "g5.2xlarge", "g5.48xlarge", "g5.4xlarge", "g5.8xlarge", "g5.xlarge", "g5g.16xlarge", "g5g.2xlarge", "g5g.4xlarge", "g5g.8xlarge", "g5g.metal", "g5g.xlarge", "h1.16xlarge", "h1.2xlarge", "h1.4xlarge", "h1.8xlarge", "hpc7g.16xlarge", "hpc7g.4xlarge", "hpc7g.8xlarge", "hs1.8xlarge", "i2.2xlarge", "i2.4xlarge", "i2.8xlarge", "i2.large", "i2.xlarge", "i3.16xlarge", "i3.2xlarge", "i3.4xlarge", "i3.8xlarge", "i3.large", "i3.metal", "i3.xlarge", "i3en.12xlarge", "i3en.24xlarge", "i3en.2xlarge", "i3en.3xlarge", "i3en.6xlarge", "i3en.large", "i3en.metal", "i3en.xlarge", "i4g.16xlarge", "i4g.2xlarge", "i4g.4xlarge", "i4g.8xlarge", "i4g.large", "i4g.xlarge", "i4i.16xlarge", "i4i.2xlarge", "i4i.32xlarge", "i4i.4xlarge", "i4i.8xlarge", "i4i.large", "i4i.metal", "i4i.xlarge", "im4gn.16xlarge", "im4gn.2xlarge", "im4gn.4xlarge", "im4gn.8xlarge", "im4gn.large", "im4gn.xlarge", "inf1.24xlarge", "inf1.2xlarge", "inf1.6xlarge", "inf1.xlarge", "inf2.24xlarge", "inf2.48xlarge", "inf2.8xlarge", "inf2.xlarge", "is4gen.2xlarge", "is4gen.4xlarge", "is4gen.8xlarge", "is4gen.large", "is4gen.medium", "is4gen.xlarge", "m1.large", "m1.medium", "m1.small", "m1.xlarge", "m2.2xlarge", "m2.4xlarge", "m2.xlarge", "m3.2xlarge", "m3.large", "m3.medium", "m3.xlarge", "m4.10xlarge", "m4.16xlarge", "m4.2xlarge", "m4.4xlarge", "m4.large", "m4.xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.large", "m5.metal", "m5.xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.large", "m5a.xlarge", "m5ad.12xlarge", "m5ad.16xlarge", "m5ad.24xlarge", "m5ad.2xlarge", "m5ad.4xlarge", "m5ad.8xlarge", "m5ad.large", "m5ad.xlarge", "m5d.12xlarge", "m5d.16xlarge", "m5d.24xlarge", "m5d.2xlarge", "m5d.4xlarge", "m5d.8xlarge", "m5d.large", "m5d.metal", "m5d.xlarge", "m5dn.12xlarge", "m5dn.16xlarge", "m5dn.24xlarge", "m5dn.2xlarge", "m5dn.4xlarge", "m5dn.8xlarge", "m5dn.large", "m5dn.metal", "m5dn.xlarge", "m5n.12xlarge", "m5n.16xlarge", "m5n.24xlarge", "m5n.2xlarge", "m5n.4xlarge", "m5n.8xlarge", "m5n.large", "m5n.metal", "m5n.xlarge", "m5zn.12xlarge", "m5zn.2xlarge", "m5zn.3xlarge", "m5zn.6xlarge", "m5zn.large", "m5zn.metal", "m5zn.xlarge", "m6a.12xlarge", "m6a.16xlarge", "m6a.24xlarge", "m6a.2xlarge", "m6a.32xlarge", "m6a.48xlarge", "m6a.4xlarge", "m6a.8xlarge", "m6a.large", "m6a.metal", "m6a.xlarge", "m6g.12xlarge", "m6g.16xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.large", "m6g.medium", "m6g.metal", "m6g.xlarge", "m6gd.12xlarge", "m6gd.16xlarge", "m6gd.2xlarge", "m6gd.4xlarge", "m6gd.8xlarge", "m6gd.large", "m6gd.medium", "m6gd.metal", "m6gd.xlarge", "m6i.12xlarge", "m6i.16xlarge", "m6i.24xlarge", "m6i.2xlarge", "m6i.32xlarge", "m6i.4xlarge", "m6i.8xlarge", "m6i.large", "m6i.metal", "m6i.xlarge", "m6id.12xlarge", "m6id.16xlarge", "m6id.24xlarge", "m6id.2xlarge", "m6id.32xlarge", "m6id.4xlarge", "m6id.8xlarge", "m6id.large", "m6id.metal", "m6id.xlarge", "m6idn.12xlarge", "m6idn.16xlarge", "m6idn.24xlarge", "m6idn.2xlarge", "m6idn.32xlarge", "m6idn.4xlarge", "m6idn.8xlarge", "m6idn.large", "m6idn.metal", "m6idn.xlarge", "m6in.12xlarge", "m6in.16xlarge", "m6in.24xlarge", "m6in.2xlarge", "m6in.32xlarge", "m6in.4xlarge", "m6in.8xlarge", "m6in.large", "m6in.metal", "m6in.xlarge", "m7a.12xlarge", "m7a.16xlarge", "m7a.24xlarge", "m7a.2xlarge", "m7a.32xlarge", "m7a.48xlarge", "m7a.4xlarge", "m7a.8xlarge", "m7a.large", "m7a.medium", "m7a.metal-48xl", "m7a.xlarge", "m7g.12xlarge", "m7g.16xlarge", "m7g.2xlarge", "m7g.4xlarge", "m7g.8xlarge", "m7g.large", "m7g.medium", "m7g.metal", "m7g.xlarge", "m7gd.12xlarge", "m7gd.16xlarge", "m7gd.2xlarge", "m7gd.4xlarge", "m7gd.8xlarge", "m7gd.large", "m7gd.medium", "m7gd.xlarge", "m7i-flex.2xlarge", "m7i-flex.4xlarge", "m7i-flex.8xlarge", "m7i-flex.large", "m7i-flex.xlarge", "m7i.12xlarge", "m7i.16xlarge", "m7i.24xlarge", "m7i.2xlarge", "m7i.48xlarge", "m7i.4xlarge", "m7i.8xlarge", "m7i.large", "m7i.xlarge", "mac1.metal", "mac2.metal", "p2.16xlarge", "p2.8xlarge", "p2.xlarge", "p3.16xlarge", "p3.2xlarge", "p3.8xlarge", "p3dn.24xlarge", "p4d.24xlarge", "p4de.24xlarge", "p5.48xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r3.large", "r3.xlarge", "r4.16xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.large", "r4.xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.large", "r5.metal", "r5.xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.large", "r5a.xlarge", "r5ad.12xlarge", "r5ad.16xlarge", "r5ad.24xlarge", "r5ad.2xlarge", "r5ad.4xlarge", "r5ad.8xlarge", "r5ad.large", "r5ad.xlarge", "r5b.12xlarge", "r5b.16xlarge", "r5b.24xlarge", "r5b.2xlarge", "r5b.4xlarge", "r5b.8xlarge", "r5b.large", "r5b.metal", "r5b.xlarge", "r5d.12xlarge", "r5d.16xlarge", "r5d.24xlarge", "r5d.2xlarge", "r5d.4xlarge", "r5d.8xlarge", "r5d.large", "r5d.metal", "r5d.xlarge", "r5dn.12xlarge", "r5dn.16xlarge", "r5dn.24xlarge", "r5dn.2xlarge", "r5dn.4xlarge", "r5dn.8xlarge", "r5dn.large", "r5dn.metal", "r5dn.xlarge", "r5n.12xlarge", "r5n.16xlarge", "r5n.24xlarge", "r5n.2xlarge", "r5n.4xlarge", "r5n.8xlarge", "r5n.large", "r5n.metal", "r5n.xlarge", "r6a.12xlarge", "r6a.16xlarge", "r6a.24xlarge", "r6a.2xlarge", "r6a.32xlarge", "r6a.48xlarge", "r6a.4xlarge", "r6a.8xlarge", "r6a.large", "r6a.metal", "r6a.xlarge", "r6g.12xlarge", "r6g.16xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.large", "r6g.medium", "r6g.metal", "r6g.xlarge", "r6gd.12xlarge", "r6gd.16xlarge", "r6gd.2xlarge", "r6gd.4xlarge", "r6gd.8xlarge", "r6gd.large", "r6gd.medium", "r6gd.metal", "r6gd.xlarge", "r6i.12xlarge", "r6i.16xlarge", "r6i.24xlarge", "r6i.2xlarge", "r6i.32xlarge", "r6i.4xlarge", "r6i.8xlarge", "r6i.large", "r6i.metal", "r6i.xlarge", "r6id.12xlarge", "r6id.16xlarge", "r6id.24xlarge", "r6id.2xlarge", "r6id.32xlarge", "r6id.4xlarge", "r6id.8xlarge", "r6id.large", "r6id.metal", "r6id.xlarge", "r6idn.12xlarge", "r6idn.16xlarge", "r6idn.24xlarge", "r6idn.2xlarge", "r6idn.32xlarge", "r6idn.4xlarge", "r6idn.8xlarge", "r6idn.large", "r6idn.metal", "r6idn.xlarge", "r6in.12xlarge", "r6in.16xlarge", "r6in.24xlarge", "r6in.2xlarge", "r6in.32xlarge", "r6in.4xlarge", "r6in.8xlarge", "r6in.large", "r6in.metal", "r6in.xlarge", "r7g.12xlarge", "r7g.16xlarge", "r7g.2xlarge", "r7g.4xlarge", "r7g.8xlarge", "r7g.large", "r7g.medium", "r7g.metal", "r7g.xlarge", "r7gd.12xlarge", "r7gd.16xlarge", "r7gd.2xlarge", "r7gd.4xlarge", "r7gd.8xlarge", "r7gd.large", "r7gd.medium", "r7gd.xlarge", "r7iz.12xlarge", "r7iz.16xlarge", "r7iz.2xlarge", "r7iz.32xlarge", "r7iz.4xlarge", "r7iz.8xlarge", "r7iz.large", "r7iz.xlarge", "t1.micro", "t2.2xlarge", "t2.large", "t2.medium", "t2.micro", "t2.nano", "t2.small", "t2.xlarge", "t3.2xlarge", "t3.large", "t3.medium", "t3.micro", "t3.nano", "t3.small", "t3.xlarge", "t3a.2xlarge", "t3a.large", "t3a.medium", "t3a.micro", "t3a.nano", "t3a.small", "t3a.xlarge", "t4g.2xlarge", "t4g.large", "t4g.medium", "t4g.micro", "t4g.nano", "t4g.small", "t4g.xlarge", "trn1.2xlarge", "trn1.32xlarge", "trn1n.32xlarge", "u-12tb1.112xlarge", "u-18tb1.112xlarge", "u-24tb1.112xlarge", "u-3tb1.56xlarge", "u-6tb1.112xlarge", "u-6tb1.56xlarge", "u-9tb1.112xlarge", "vt1.24xlarge", "vt1.3xlarge", "vt1.6xlarge", "x1.16xlarge", "x1.32xlarge", "x1e.16xlarge", "x1e.2xlarge", "x1e.32xlarge", "x1e.4xlarge", "x1e.8xlarge", "x1e.xlarge", "x2gd.12xlarge", "x2gd.16xlarge", "x2gd.2xlarge", "x2gd.4xlarge", "x2gd.8xlarge", "x2gd.large", "x2gd.medium", "x2gd.metal", "x2gd.xlarge", "x2idn.16xlarge", "x2idn.24xlarge", "x2idn.32xlarge", "x2idn.metal", "x2iedn.16xlarge", "x2iedn.24xlarge", "x2iedn.2xlarge", "x2iedn.32xlarge", "x2iedn.4xlarge", "x2iedn.8xlarge", "x2iedn.metal", "x2iedn.xlarge", "x2iezn.12xlarge", "x2iezn.2xlarge", "x2iezn.4xlarge", "x2iezn.6xlarge", "x2iezn.8xlarge", "x2iezn.metal", "z1d.12xlarge", "z1d.2xlarge", "z1d.3xlarge", "z1d.6xlarge", "z1d.large", "z1d.metal", "z1d.xlarge"]
    ConstraintDescription: Please choose a valid instance type.
  DesiredCapacity:
    Type: Number
    Default: '0'
    Description: Number of EC2 instances to launch in your ECS cluster.
  MaxSize:
    Type: Number
    Default: '100'
    Description: Maximum number of EC2 instances that can be launched in your ECS cluster.
  ECSAMI:
    Type: AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>
    Default: /aws/service/ecs/optimized-ami/amazon-linux-2/recommended/image_id
    Description: The Amazon Machine Image ID used for the cluster, leave it as the default value to get the latest AMI
  VpcId:
    Type: AWS::EC2::VPC::Id
    Description: VPC ID where the ECS cluster is launched
  SubnetIds:
    Type: List<AWS::EC2::Subnet::Id>
    Description: List of subnet IDs where the EC2 instances will be launched

Resources:
  # Cluster that keeps track of container deployments
  ECSCluster:
    Type: AWS::ECS::Cluster
    Properties:
      ClusterSettings:
        - Name: containerInsights
          Value: enabled

  # Autoscaling group. This launches the actual EC2 instances that will register
  # themselves as members of the cluster, and run the docker containers.
  ECSAutoScalingGroup:
    Type: AWS::AutoScaling::AutoScalingGroup
    DependsOn:
      # This is to ensure that the ASG gets deleted first before these
      # resources, when it comes to stack teardown.
      - ECSCluster
      - EC2Role
    Properties:
      VPCZoneIdentifier: !Ref SubnetIds
      LaunchTemplate:
        LaunchTemplateId: !Ref ContainerInstances
        Version: !GetAtt ContainerInstances.LatestVersionNumber
      MinSize: 0
      MaxSize: !Ref MaxSize
      DesiredCapacity: !Ref DesiredCapacity
      NewInstancesProtectedFromScaleIn: true
    UpdatePolicy:
      AutoScalingReplacingUpdate:
        WillReplace: 'true'

  # The config for each instance that is added to the cluster
  ContainerInstances:
    Type: AWS::EC2::LaunchTemplate
    Properties:
      LaunchTemplateData:
        ImageId: !Ref ECSAMI
        InstanceType: !Ref InstanceType
        IamInstanceProfile:
          Name: !Ref EC2InstanceProfile
        SecurityGroupIds:
          - !Ref ContainerHostSecurityGroup
        UserData:
          # This injected configuration file is how the EC2 instance
          # knows which ECS cluster on your AWS account it should be joining
          Fn::Base64: !Sub |
            #!/bin/bash
            echo ECS_CLUSTER=${ECSCluster} >> /etc/ecs/ecs.config
        BlockDeviceMappings:
          - DeviceName: "/dev/xvda"
            Ebs:
              VolumeSize: 50
              VolumeType: gp3
        # Disable IMDSv1, and require IMDSv2
        MetadataOptions:
          HttpEndpoint: enabled
          HttpTokens: required
  EC2InstanceProfile:
    Type: AWS::IAM::InstanceProfile
    Properties:
      Path: /
      Roles:
        - !Ref EC2Role

  # Custom resource that force destroys the ASG. This cleans up EC2 instances that had
  # managed termination protection enabled, but which are not yet released.
  # This is necessary because ECS does not immediately release an EC2 instance from termination
  # protection as soon as the instance is no longer running tasks. There is a cooldown delay.
  # In the case of tearing down the CloudFormation stack, CloudFormation will delete the
  # AWS::ECS::Service and immediately move on to tearing down the AWS::ECS::Cluster, disconnecting
  # the AWS::AutoScaling::AutoScalingGroup from ECS management too fast, before ECS has a chance
  # to asynchronously turn off managed instance protection on the EC2 instances.
  # This will leave some EC2 instances stranded in a state where they are protected from scale-in forever.
  # This then blocks the AWS::AutoScaling::AutoScalingGroup from cleaning itself up.
  # The custom resource function force destroys the autoscaling group when tearing down the stack,
  # avoiding the issue of protected EC2 instances that can never be cleaned up.
  CustomAsgDestroyerFunction:
    Type: AWS::Lambda::Function
    Properties:
      Code:
        ZipFile: !Sub |
          const { AutoScalingClient, DeleteAutoScalingGroupCommand } = require("@aws-sdk/client-auto-scaling");
          const autoscaling = new AutoScalingClient({ region: '${AWS::Region}' });
          const response = require('cfn-response');

          exports.handler = async function(event, context) {
            console.log(event);

            if (event.RequestType !== "Delete") {
              await response.send(event, context, response.SUCCESS);
              return;
            }

            const input = {
              AutoScalingGroupName: '${ECSAutoScalingGroup}',
              ForceDelete: true
            };
            const command = new DeleteAutoScalingGroupCommand(input);
            const deleteResponse = await autoscaling.send(command);
            console.log(deleteResponse);

            await response.send(event, context, response.SUCCESS);
          };
      Handler: index.handler
      Runtime: nodejs20.x
      Timeout: 30
      Role: !GetAtt CustomAsgDestroyerRole.Arn

  # The role used by the ASG destroyer
  CustomAsgDestroyerRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal:
              Service:
                - lambda.amazonaws.com
            Action:
              - sts:AssumeRole
      ManagedPolicyArns:
        # https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaBasicExecutionRole.html
        - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
      Policies:
        - PolicyName: allow-to-delete-autoscaling-group
          PolicyDocument:
            Version: 2012-10-17
            Statement:
              - Effect: Allow
                Action: autoscaling:DeleteAutoScalingGroup
                Resource: !Sub arn:aws:autoscaling:${AWS::Region}:${AWS::AccountId}:autoScalingGroup:*:autoScalingGroupName/${ECSAutoScalingGroup}

  CustomAsgDestroyer:
    Type: Custom::AsgDestroyer
    DependsOn:
      - CapacityProviderAssociation
    Properties:
      ServiceToken: !GetAtt CustomAsgDestroyerFunction.Arn
      Region: !Ref "AWS::Region"

  # Create an ECS capacity provider to attach the ASG to the ECS cluster
  # so that it autoscales as we launch more containers
  CapacityProvider:
    Type: AWS::ECS::CapacityProvider
    Properties:
      AutoScalingGroupProvider:
        AutoScalingGroupArn: !Ref ECSAutoScalingGroup
        ManagedScaling:
          InstanceWarmupPeriod: 60
          MinimumScalingStepSize: 1
          MaximumScalingStepSize: 100
          Status: ENABLED
          # Percentage of cluster reservation to try to maintain
          TargetCapacity: 100
        ManagedTerminationProtection: ENABLED
        ManagedDraining: ENABLED

  # Create a cluster capacity provider assocation so that the cluster
  # will use the capacity provider
  CapacityProviderAssociation:
    Type: AWS::ECS::ClusterCapacityProviderAssociations
    Properties:
      CapacityProviders:
        - !Ref CapacityProvider
      Cluster: !Ref ECSCluster
      DefaultCapacityProviderStrategy:
        - Base: 0
          CapacityProvider: !Ref CapacityProvider
          Weight: 1

  # A security group for the EC2 hosts that will run the containers.
  # This can be used to limit incoming traffic to or outgoing traffic
  # from the container's host EC2 instance.
  ContainerHostSecurityGroup:
    Type: AWS::EC2::SecurityGroup
    Properties:
      GroupDescription: Access to the EC2 hosts that run containers
      VpcId: !Ref VpcId

  # Role for the EC2 hosts. This allows the ECS agent on the EC2 hosts
  # to communciate with the ECS control plane, as well as download the docker
  # images from ECR to run on your host.
  EC2Role:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Statement:
          - Effect: Allow
            Principal:
              Service: [ec2.amazonaws.com]
            Action: ['sts:AssumeRole']
      Path: /

      # See reference: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
      ManagedPolicyArns:
        - arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role

  # This is a role which is used within Fargate to allow the Fargate agent
  # to download images, and upload logs.
  ECSTaskExecutionRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Statement:
          - Effect: Allow
            Principal:
              Service: [ecs-tasks.amazonaws.com]
            Action: ['sts:AssumeRole']
            Condition:
              ArnLike:
                aws:SourceArn: !Sub arn:aws:ecs:${AWS::Region}:${AWS::AccountId}:*
              StringEquals:
                aws:SourceAccount: !Ref AWS::AccountId
      Path: /

      # This role enables basic features of ECS. See reference:
      # https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSTaskExecutionRolePolicy
      ManagedPolicyArns:
        - arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

Outputs:
  ClusterName:
    Description: The ECS cluster into which to launch resources
    Value: !Ref ECSCluster
  ECSTaskExecutionRole:
    Description: The role used to start up a task
    Value: !Ref ECSTaskExecutionRole
  CapacityProvider:
    Description: The cluster capacity provider that the service should use
                 to request capacity when it wants to start up a task
    Value: !Ref CapacityProvider
  ContainerHostSecurityGroup:
    Description: The security group of the host EC2 instances
    Value: !Ref ContainerHostSecurityGroup

Define the service

The following CloudFormation defines a service and it's load balancer that will provide ingress to the service.

File: service.ymlLanguage: yml
AWSTemplateFormatVersion: '2010-09-09'
Description: An example service that deploys a bridge networking mode
             on EC2 capacity. Service uses a capacity provider to request
             EC2 instances to run on.

Parameters:
  VpcId:
    Type: String
    Description: The VPC that the service is running inside of
  SubnetIds:
    Type: List<AWS::EC2::Subnet::Id>
    Description: List of public subnet ID's the load balancer is hosted in.
  ClusterName:
    Type: String
    Description: The name of the ECS cluster into which to launch capacity.
  ECSTaskExecutionRole:
    Type: String
    Description: The role used to start up an ECS task
  CapacityProvider:
    Type: String
    Description: The cluster capacity provider that the service should use
                 to request capacity when it wants to start up a task
  ServiceName:
    Type: String
    Default: web
    Description: A name for the service
  ImageUrl:
    Type: String
    Default: public.ecr.aws/docker/library/nginx:latest
    Description: The url of a docker image that contains the application process that
                 will handle the traffic for this service
  ContainerCpu:
    Type: Number
    Default: 256
    Description: How much CPU to give the container. 1024 is 1 CPU
  ContainerMemory:
    Type: Number
    Default: 512
    Description: How much memory in megabytes to give the container
  ContainerPort:
    Type: Number
    Default: 80
    Description: What port that the application expects traffic on
  DesiredCount:
    Type: Number
    Default: 2
    Description: How many copies of the service task to run
  ContainerHostSecurityGroup:
    Type: String
    Description: Name of the security group that is used by the EC2 instances.
                 Used so that the service can add its load balancer's security
                 group as an authorized source of inbound traffic.

Resources:

  # The task definition. This is a simple metadata description of what
  # container to run, and what resource requirements it has.
  TaskDefinition:
    Type: AWS::ECS::TaskDefinition
    Properties:
      Family: !Ref ServiceName
      Cpu: !Ref ContainerCpu
      Memory: !Ref ContainerMemory
      NetworkMode: bridge
      RequiresCompatibilities:
        - EC2
      ExecutionRoleArn: !Ref ECSTaskExecutionRole
      ContainerDefinitions:
        - Name: !Ref ServiceName
          Cpu: !Ref ContainerCpu
          Memory: !Ref ContainerMemory
          Image: !Ref ImageUrl
          PortMappings:
            - ContainerPort: !Ref ContainerPort
              HostPort: 0 # Dynamic port mapping to random port from ephemeral range
          LogConfiguration:
            LogDriver: 'awslogs'
            Options:
              mode: non-blocking
              max-buffer-size: 25m
              awslogs-group: !Ref LogGroup
              awslogs-region: !Ref AWS::Region
              awslogs-stream-prefix: !Ref ServiceName

  # The service. The service is a resource which allows you to run multiple
  # copies of a type of task, and gather up their logs and metrics, as well
  # as monitor the number of running tasks and replace any that have crashed
  Service:
    Type: AWS::ECS::Service
    # Avoid race condition between ECS service creation and associating
    # the target group with the LB
    DependsOn: PublicLoadBalancerListener
    Properties:
      ServiceName: !Ref ServiceName
      Cluster: !Ref ClusterName
      PlacementStrategies:
        - Field: attribute:ecs.availability-zone
          Type: spread
        - Field: cpu
          Type: binpack
      CapacityProviderStrategy:
        - Base: 0
          CapacityProvider: !Ref CapacityProvider
          Weight: 1
      DeploymentConfiguration:
        MaximumPercent: 200
        MinimumHealthyPercent: 75
      DesiredCount: !Ref DesiredCount
      TaskDefinition: !Ref TaskDefinition
      LoadBalancers:
        - ContainerName: !Ref ServiceName
          ContainerPort: !Ref ContainerPort
          TargetGroupArn: !Ref ServiceTargetGroup

  # Keeps track of the list of tasks for the service
  ServiceTargetGroup:
    Type: AWS::ElasticLoadBalancingV2::TargetGroup
    Properties:
      HealthCheckIntervalSeconds: 6
      HealthCheckPath: /
      HealthCheckProtocol: HTTP
      HealthCheckTimeoutSeconds: 5
      HealthyThresholdCount: 2
      TargetType: instance
      Port:  !Ref ContainerPort # Port will be ignored in this case because of bridge networking mode
      Protocol: HTTP
      UnhealthyThresholdCount: 10
      VpcId: !Ref VpcId
      TargetGroupAttributes:
        - Key: deregistration_delay.timeout_seconds
          Value: 0

  # A public facing load balancer, this is used as ingress for
  # public facing internet traffic.
  PublicLoadBalancerSG:
    Type: AWS::EC2::SecurityGroup
    Properties:
      GroupDescription: Access to the public facing load balancer
      VpcId: !Ref VpcId
      SecurityGroupIngress:
        # Allow access to public facing ALB from any IP address
        - CidrIp: 0.0.0.0/0
          IpProtocol: -1
  PublicLoadBalancer:
    Type: AWS::ElasticLoadBalancingV2::LoadBalancer
    Properties:
      Scheme: internet-facing
      LoadBalancerAttributes:
      - Key: idle_timeout.timeout_seconds
        Value: '30'
      Subnets: !Ref SubnetIds
      SecurityGroups:
        - !Ref PublicLoadBalancerSG
  PublicLoadBalancerListener:
    Type: AWS::ElasticLoadBalancingV2::Listener
    Properties:
      DefaultActions:
        - Type: 'forward'
          ForwardConfig:
            TargetGroups:
              - TargetGroupArn: !Ref ServiceTargetGroup
                Weight: 100
      LoadBalancerArn: !Ref 'PublicLoadBalancer'
      Port: 80
      Protocol: HTTP

  # Because we are launching tasks with bridge networking mode
  # we need to open up ingress on the EC2 instances themselves so that they
  # allow inbound traffic from the load balancer.
  EcsSecurityGroupIngressFromPublicALB:
    Type: AWS::EC2::SecurityGroupIngress
    Properties:
      Description: Ingress from the public ALB
      GroupId: !Ref 'ContainerHostSecurityGroup'
      IpProtocol: -1
      SourceSecurityGroupId: !Ref 'PublicLoadBalancerSG'

  # This log group stores the stdout logs from this service's containers
  LogGroup:
    Type: AWS::Logs::LogGroup

Deploy it all

You should have the following three files:

  • vpc.yml - Template for the base VPC that you wish to host resources in
  • cluster.yml - Template for the ECS cluster and its capacity provider
  • service.yml - Template for the web service that will be deployed on the cluster

Use the following parent stack to deploy all three stacks:

File: parent.ymlLanguage: yml
AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: Parent stack that deploys VPC, Amazon ECS cluster with EC2 instances,
             and a load balanced ECS service on EC2, in bridge networking mode.

Resources:

  # The networking configuration. This creates an isolated
  # network specific to this particular environment
  VpcStack:
    Type: AWS::Serverless::Application
    Properties:
      Location: vpc.yml

  # This stack contains the Amazon ECS cluster itself
  ClusterStack:
    Type: AWS::Serverless::Application
    Properties:
      Location: cluster.yml
      Parameters:
        VpcId: !GetAtt VpcStack.Outputs.VpcId
        SubnetIds: !GetAtt VpcStack.Outputs.PublicSubnetIds

  # This stack contains the container deployment
  ServiceStack:
    Type: AWS::Serverless::Application
    Properties:
      Location: service.yml
      Parameters:
        VpcId: !GetAtt VpcStack.Outputs.VpcId
        SubnetIds: !GetAtt VpcStack.Outputs.PublicSubnetIds
        ClusterName: !GetAtt ClusterStack.Outputs.ClusterName
        ECSTaskExecutionRole: !GetAtt ClusterStack.Outputs.ECSTaskExecutionRole
        ContainerHostSecurityGroup: !GetAtt ClusterStack.Outputs.ContainerHostSecurityGroup
        CapacityProvider: !GetAtt ClusterStack.Outputs.CapacityProvider

Use the following command to deploy all three stacks:

Language: shell
sam deploy \
  --template-file parent.yml \
  --stack-name web-service-environment \
  --resolve-s3 \
  --capabilities CAPABILITY_IAM

Test it out

Open the Amazon ECS cluster in the web console and verify that the service has been created with a desired count of two. You will observe the service create pending tasks that are waiting in PROVISIONING state. The ECS capacity provider will launch EC2 instances to fulfill the EC2 capacity demand and ECS will place the provisioning tasks onto those EC2 instances. Last but not least you will the Application Load Balancer get each task registered into it's target group.

On the "Health & Metrics" tab of the service details page you can click on the load balancer name to navigate to the load balancer in the EC2 console. This will give you the load balancer's public facing CNAME that you can copy and paste into your browser to verify that the sample NGINX webserver is up and running.

Tear it down

Language: shell
sam delete --stack-name web-service-environment

See Also

Alternative Patterns

Not quite right for you? Try another way to do this:

API  Public facing API hosted on EC2 instances

An API service with private networking configured.

AWS Fargate  Serverless public facing website hosted on AWS Fargate

Consider serverless Fargate capacity for less management overhead.

Terraform by HashiCorp  Elastic Container Service (ECS) Blueprints for Terraform

Instead of CloudFormation consider deploying with Terraform by HashiCorp

AWS Cloud Development Kit (CDK)  Public facing, load balanced website on EC2

If you don't like writing and managing CloudFormation YAML by hand, try out AWS Cloud Development Kit